Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(4): 2377-2384, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38233221

RESUMO

Formate (HCOO-) is the most dominant intermediate identified during carbon dioxide electrochemical reduction (CO2ER). While previous studies showed that copper (Cu)-based materials that include Cu(0), Cu2O, and CuO are ideal catalysts for CO2ER, challenges to scalability stem from low selectivity and undesirable products in the -1.0-1.0 V range. There are few studies on the binding mechanism of intermediates and products for these systems as well as on changes to surface sites upon applying potential. Here, we use an in situ approach to study the redox surface chemistry of formate on Cu thin films deposited on Si wafers using a VeeMAX III spectroelectrochemical (SEC) cell compatible with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra for surface species were collected in real time as a function of applied potential during cyclic voltammetry (CV) experiments. Results showed the reproducibility of CV curves on freshly prepared Cu/Si wafers with relatively high signal-to-noise ATR-FTIR absorbance features of surface species during these electrochemical experiments. The oxidation reaction of HCOO- to bicarbonate (HCO3-) was observed using ATR-FTIR at a voltage of 0.27 V. Samples were then subjected to reduction in the CV, and the aqueous phase products below the detection limit of the SEC-ATR-FTIR were identified using ion chromatography (IC). We report the formation of glycolate (H3C2O3-) and glyoxylate (HC2O3-) with trace amounts of oxalate (C2O42-), indicating that C-C coupling reactions proceed in these systems. Changes to the oxidation state of surface Cu were measured using X-ray photoelectron spectroscopy, which showed a reduction in Cu(0) and an increase in Cu(OH)2, indicating surface oxidation.

2.
Langmuir ; 38(48): 14789-14798, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417502

RESUMO

Increasing levels of carbon dioxide (CO2) from human activities is affecting the ecosystem and civilization as we know it. CO2 removal from the atmosphere and emission reduction by heavy industries through carbon capture, utilization, and storage (CCUS) technologies to store or convert CO2 to useful products or fuels is a popular approach to meet net zero targets by 2050. One promising process of CO2 removal and conversion is CO2 electrochemical reduction (CO2ER) using metal and metal oxide catalysts, particularly copper-based materials. However, the current limitations of CO2ER stem from the low product selectivity of copper electrocatalysts due to existing knowledge gaps of the reaction mechanisms using surfaces that normally have native oxide layers. Here, we report systematic control studies of the surface interactions of major intermediates in CO2ER, formate, bicarbonate, and acetate, with CuO nanoparticles in situ and in real time using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Spectra were collected as a function of concentration, pH, and time in the dark and the in absence of added electrolytes. Isotopic exchange experiments were also performed to elucidate the type of surface complexes from H/D exchange. Our results show that the organics and bicarbonate form mostly outer-sphere complexes mediated by hydrogen bonding with CuO nanoparticles with Gibbs free energy of adsorption of about -25 kJ mol-1. The desorption kinetics of the surface species indicated relatively fast and slow regions reflective of the heterogeneity of sites that affect the strength of hydrogen bonding. These results suggest that hydrogen bonding, whether intermolecular or with surface sites on CuO nanoparticles, might be playing a more important role in the CO2ER reaction mechanism than previously thought, contributing to the lack of product selectivity.


Assuntos
Cobre , Nanopartículas , Humanos , Adsorção , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Dióxido de Carbono/química , Bicarbonatos , Ecossistema , Proteínas Mutadas de Ataxia Telangiectasia
3.
Anal Chim Acta ; 1120: 67-74, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32475393

RESUMO

This work compares the performance of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), single particle inductively coupled plasma mass spectrometry (spICPMS) and flow injection (FI) coupled to spICPMS for the characterization of synthetic ferromagnetic Ni nanoparticles (NPs) prepared with and without polyvinylpyrrolidone (PVP) stabilizer. Whereas single NPs measurement by XRD yielded nominal diameters of 13.7 and 16.6 nm with and without PVP respectively, a diameter of 100-130 nm was obtained by TEM and SEM with or without PVP, indicating extensive agglomeration during preparation for microscopy. In contrast, without PVP stabilization, mean and mode sizes of respectively 35 ± 18 and 21 nm by spICPMS and 33 ± 15 and 20 nm by FI-spICPMS were obtained for suspensions of Ni NPs using external calibration with Ni standard solutions. With PVP stabilization, the mean and mode sizes respectively decreased to 27 ± 12 and 18 nm by spICPMS and 25 ± 10 and 16 nm by FI-spICPMS. Mass balance taking into account the amount of dissolved Ni was verified in all cases. No degradation in performance resulted from using FI-spICPMS instead of spICPMS, even though measurement of NPs mass by FI-spICPMS is done without knowledge of the transport efficiency and the sample uptake rate. This is the first time that spICPMS and FI-spICPMS are demonstrated to be suitable for the characterization of ferromagnetic NPs.

4.
ACS Appl Mater Interfaces ; 12(13): 15095-15107, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159321

RESUMO

Herein, we study the effect of adding bismuth to Ni-nanostructured catalysts (NixBi1-x, x = 100-90 at. %) for glycerol electro-oxidation in alkaline solution by combining physiochemical, electrochemical, and in situ infrared spectroscopy techniques, as well as continuous electrolysis with HPLC (high-performance liquid chromatography) product analysis. The addition of small quantities of Bi (<20 at. %) to Ni nanoparticles led to significant activity enhancement at lower overpotentials, with Ni90Bi10 displaying an over 2-fold increase compared to Ni. Small quantities of bismuth actively affected the reaction selectivity of Ni by suppressing the pathways with C-C bond cleavage, hindering the production of carbonate and formate and improving the formation of tartronate, oxalate, and glycerate. Furthermore, the effect of aging on NixBi1-x catalysts was investigated, resulting in structural modification from the Ni-Bi double shell/core structure to Bi decorated on the folded Ni sheet, thus enhancing their activity twice after 2 weeks of aging. NiBi catalysts are promising candidates for glycerol valorization to high-value-added products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...